Atuação e produtos
Downloads Relacionados
Referências e Publicações
|
As soluções Sonelastic® se destinam a caracterização simultânea dos módulos de elasticidade e do amortecimento (atrito interno) de materiais. Algumas das publicações que empregaram as soluções Sonelastic® ou Scanelastic®- Pereira, A.H.A.; Otani, L.B.; Rodrigues, J.A.; Traon, N.; Tonnesen, T.; Telle, R. The Influence of Nonlinear Elasticity on the Accuracy of Thermal Shock Damage Evaluation by the Impulse Excitation Technique. Interceram, v. 60, n° 6, p. 388-392, 2011. - Pereira, A.H.A.; Nascimento, A.R.C.; Exposito, C.C.D.; Martins, L.T.; Tonnesen, T.; Rodrigues, J.A. Elastic moduli, damping and modulus of rupture changes in a high alumina refractory castable due to different types of thermal shock. Boletín de la Sociedad Española de Cerámica y Vidrio, v. 51, p. 151-156, 2012. - Cabrelon, M.D. ; Pereira, A.H.A. ; Medeiros, J. ; Rodrigues, J.A. Efeito do tempo de exposição a uma atmosfera coqueificante sobre a microestrutura e propriedades de um concreto refratário usado na indústria petroquímica. Cerâmica (São Paulo. Impresso), v. 58, p. 195-204, 2012. - Pereira, A.H.A. ; Musolino, B. ; Maciel C.D. ; Rodrigues, J.A. Algoritmo para determinação do amortecimento de materiais cerâmicos pela técnica das frequências naturais de vibração via excitação por impulso. Cerâmica (São Paulo. Impresso), v. 58, p. 229-237, 2012. - P. R. T. Tiba, B. H. Teider, F. Figueiredo, J. B. Gallo, V. C. Pandolfelli ; “Seleção de refratários para fornos de cozimento de anodo”; Cerâmica 55 (2009) 305-311. - G. B. Cintra, M. A. L. Braulio, L. R. M. Bittencourt, V. C. Pandolfelli; “Tamanho de grão do MgO e seus efeitos na resistência ao choque térmico de concretos refratários espinelizados in-situ”; Cerâmica 56 (2010) 15-22. - M. V. M. Magliano, V. C. Pandolfelli; “Características da sílica coloidal e seus efeitos em concretos refratários”; Cerâmica 56 (2010) 141-147. - A. H. A. Pereira, M. Venet, T. Tonnesen, J. A. Rodrigues; "Desenvolvimento de um equipamento para a caracterização não-destrutiva dos módulos elásticos de materiais cerâmicos em geral". Cerâmica 56 (2010) 118-122. - A. H. A. Pereira, G. M. Fortes, B. Schickle, T. Tonnesen, B. Musolino, C. D. Maciel, J. A. Rodrigues; "Correlation between changes in mechanical strength and damping of a high alumina refractory castable progressively damaged by thermal shock". Cerâmica 56 (2010) 311-314. Normas que podem ser atendidas pelas soluções Sonelastic® e Scanelastic®- Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Sonic Resonance; designation: ASTM E1875. ASTM International. - Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration; designation: ASTM E1876. ASTM International. - Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio of Refractory Materials by Impulse Excitation of Vibration; designation: ASTM C1548. ASTM International. - Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Frequencies of Concrete Specimens; designation: ASTM C215. ASTM International. - Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio for Advanced Ceramics by Impulse Excitation of Vibration; designation: ASTM C1259. ASTM International. - Standard Test Method for Young's Modulus, Shear Modulus, and Poisson's Ratio for Glass and Glass-Ceramics by Resonance; designation: ASTM C623. ASTM International. - Standard Test Method for Young's Modulus, Shear Modulus, and Poisson's Ratio For Ceramic Whitewares by Resonance; designation: ASTM C848. ASTM International. - Standard Test Method for Moduli of Elasticity and Fundamental Frequencies of Carbon and Graphite Materials by Sonic Resonance; designation: ASTM C747. ASTM International. Referências relacionadas às equações e cálculos empregados nas soluções Sonelastic® e Scanelastic®Para barras e cilindros: - S. P. Timoshenko; On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars. Phil. Mag. Ser. 6 [41] 774-746 (1921). - S. P. Timoshenko; On the Transverse Vibrations of Bars of Uniform Cross Section. Phil. Mag. Ser. 6 [43] 125-131 (1922). - S. P. Timoshenko; Vibration Problems in Engineering. 2nd Ed. D. Van Nostrand Co., New York, 337-342 (1937). - F. Z. Forster; Ein neues Meverfahren zur Bestimmung des Elastizitäts-moduls und der Dämpfung. Zeitschrift Für Metallkunde. v. 29, n. 109 (1937). - G. Pickett; Equations for Computing Elastic Constants from Flexural and Torsional Resonant Frequencies of Vibration of Prisms and Cylinders; Proceedings ASTM, 45 846-865 (1945). - S. Spinner, R. C. Valore; Comparisons Between the Shear Modulus and Torsional Resonance Frequencies for Bars and Rectangular Cross Sections. Journal of Research, NIST, JNBAA, 60 RP2861, p. 459 (1958). - T. Kaneko; Relation Between Flexional Resonant Frequency Equations for the Flexional Vibration of Cilindrical Rods. J. Res. Natl. Bur. Stand., v. 64B, p. 237 (1960). - Resonance Frequencies of Uniform Bars. J. Res. of the National Bureau of Standards-A. Physics and Chemistry, 64A [2] 147-155 (1960). - S. Spinner, W. E. Tefft; A Method for Determining Mechanical Resonance Frequencies and for Calculating Elastic Moduli from these Frequencies. Proceedings ASTM, 61 1221-1239 (1961). Para discos - J. A. Salem, A. Singh; Polynomial Expressions for Estimating Elastic Constants from the Resonance of Circular Plates. Materials Science and Engineering, A, 422 [1] 292–297 (Apr 2006). - G. Martincek; The Determination of Poisson's Ratio and the Dynamic Modulus of Elasticity from the Frequencies of Natural Vibration in Thick Circular Plates. J. Sound Vib., 2 [2] 116-127 (1965). Para placas - A. W. Leissa, Y. Narita; Vibrations of Completely Free Shallow Shells of Rectangular Planform. J. Sound & Vib. 96 [2] 207-218 (1984). - A. A. Wereszczak, R. H. Kraft, J. J. Swab; Flexural And Torsional Resonances Of Ceramic Tiles Via Impulse Excitation Of Vibration; Ceramic Engineering and Science Proceedings, 24 (2003). - T. Lauwagie, H. Solb, G. Roebbenc, W. Heylena, Y. Shib, O. V. der Biest; Mixed numerical–experimental identification of elastic properties of orthotropic metal plates. NDT&E International, 36 487–495 (2003). - M. Alfanol L. Pagnotta; An Inverse Procedure for Determining the Material Constants of Isotropic Square Plates by Impulse Excitation of Vibration. Appl. Mech. Mat., 3-4 287-292 (2005). - M. Alfanol L. Pagnotta; Measurement of the Dynamic Elastic Properties of a Thin Coating. Review of Scientific Instruments, 77 056107 (2006). Para discos e anéis (rebolos abrasivos) - N. Raju; Vibrations of Annular Plates. J. Aeron. Soc. India, 14 [2] 37-52 (1962). J. Peters, R. Snoeys; The E modulus , a suitable characteristic of grinding wheels. Revue M, II [4] 1-11 (1965). - S. M. Vogel, D. W. Skinner; Natural Frequencies of Transversely Vibrating Uniform Annular Plates. J. Appl. Mech., 32 926-931 (1965). - R. D. Blevins; Formulas for Natural Frequency and Mode Shape. Publ. Krieger Publishing Company (1979). - R. L. Smith; The Evaluation of NDT Techniques for Abrasive Wheels. British Journal of Non-Destructive Testing; vol. 28, no2, pp. 73-79 (1986). Algumas referências relacionadas às técnicas empregadas nas soluções Sonelastic® e Scanelastic®, que são baseadas nas frequências naturais de vibração- N. Suansuwan, M. V. Swain; Determination of elastic properties of metal alloys and dental porcelains. J. Oral Rehabilitation, 28 133-139 (2001). - H. D. Tietz, M. Dietz, L. Bühling, B. May; Non-Destructive Testing of Green Ceramic Materials. NDT.net 3 [11] 1-7 (1998). - W. T. Chu; A Comparison of Two Test Methods for Measuring Young's Modulus of Building Materials. Canadian Acoustics, 24 [3] 11 (1996). - A. S. Maxwell, S. Owen-Jones, N. M. Jennett; Measurement of Young's modulus and Poisson's ratio of thin coatings using impact excitation and depth-sensing indentation. Rev. Sci. Instrum. 75 [4] 970-975 (2004). - J. Schrooten, G. Roebben, J. A. Helsen; Young's Modulus of Bioactive Glass Coated Oral Implants: Porosity Corrected Bulk Modulus Versus Resonance Frequency Analysis. Scripta Materialia, 41 [10] 1047-1053 (1999). - C. Chiu, E. D. Case; Elastic Modulus Determination of Coating Layers as Applied to Layered Ceramic Composites. Materials Science and Engineering, A132 39-47 (1991). C. Y. Wei, S. N. Kukureka; Evaluation of damping and elastic properties of composites and composite structures by the resonance technique. J. Mat. Sci., 35 3785-3792 (2000). - B. Christaras, F. Auger, E. Mosse; Determination of the moduli of elasticity of rocks. Comparison of the ultrasonic velocity and mechanical resonance frequency methods with direct static methods. Materials and Structures; Volume 27, n4, pp. 222-228 (1994). - A. FAWZY, C.E. SEMLER; Prediction of Refractory Strength Using Nondestructive Sonic Measurements, Am. Ceram. Soc. Bull., v. 64, n. 12, p. 1555-1558 (1985). - T. Tonnesen, R. Telle; Thermal Shock Damage in Castables: Microstructural Changes and Evaluation by a Damping Method. Ceramic Forum International, v. 84, n. 9, p. E132-E136 (2007). - R. Zhang, J. Perez, E. J. Lavernia; Documentation of damping capacity of metallic, ceramic and metal-matrix composite materials. Journal of Materials Science, v. 28, n. 9, p. 2395-2404 (1993). - R. Morrel; Measuring Elastic Properties of Advanced Technical Ceramics – A review. UK National Physical Laboratory Report, n. 42 (1996). - R. Morrel; NPL Measurement Good Practice Guide - Elastic Module Measurement. UK National Physical Laboratory Report, n. 98 (2006). - T. Akashi; On the Measurement of Logarithmic Decrement of Concrete. General Meeting Reviews, Cement Association of Japan. p. 103-104 (1960). - R.N. Swamy; Damping Mechanisms in Cementitious Systems. Proceedings of a Conference on Dynamic waves in civil engineering, University College, Swansea, July 1970; Wiley-Interscience, p. 521-542 (1971). - R.N. Swamy, G. Rigby; Dynamic properties of hardened paste, mortar and concrete. Materials and Structures: Research and Testing. v. 4, n. 19, p. 13-40 (1971). - R. Dieterle, H. Banchmann; Experiments and Models for the Damping Behaviour of Vibrating Reinforced concrete Beams in the Uncracked and Cracked Condition. - International Association for Bridge and Structural Engineering Report of the working comissions, v. 34 (1981). |